FastMCP Project Structure
Overview
FastMCP is Prefect's Python framework for the Model Context Protocol (MCP), designed to provide a standardized interface for LLM-tool interactions. This analysis examines the project structure and identifies key architectural components.
Project Tree Structure
fastmcp/
βββ README.md # Project documentation and quick start
βββ pyproject.toml # Modern Python project configuration
βββ LICENSE # Apache License 2.0
βββ .gitignore # Git ignore patterns
β
βββ fastmcp/ # Core framework package
β βββ __init__.py # Package initialization and exports
β βββ server.py # FastMCP server implementation (Decorator, Builder patterns)
β βββ client.py # MCP client implementations
β βββ types.py # MCP protocol type definitions
β βββ context.py # Context management (Strategy pattern)
β β
β βββ transports/ # Communication layer (Adapter pattern)
β β βββ __init__.py # Transport interface definitions
β β βββ stdio.py # STDIO transport adapter
β β βββ http.py # HTTP transport adapter
β β βββ sse.py # Server-Sent Events transport
β β
β βββ tools/ # Tool execution framework
β β βββ __init__.py # Tool registry and management
β β βββ registry.py # Tool registration system (Registry pattern)
β β βββ decorators.py # @mcp.tool decorator implementation
β β
β βββ resources/ # Resource management system
β β βββ __init__.py # Resource interface definitions
β β βββ base.py # Base resource classes
β β βββ providers.py # Resource provider implementations
β β
β βββ prompts/ # Prompt template management
β β βββ __init__.py # Prompt system initialization
β β βββ templates.py # Template management (Template Method pattern)
β β βββ registry.py # Prompt registry system
β β
β βββ proxy/ # Proxy server capabilities (Proxy pattern)
β β βββ __init__.py # Proxy system exports
β β βββ server.py # Proxy server implementation
β β βββ routing.py # Request routing logic
β β
β βββ monitoring/ # Observability system (Observer pattern)
β β βββ __init__.py # Monitoring interface
β β βββ observers.py # Observer implementations
β β βββ metrics.py # Metrics collection
β β βββ logging.py # Structured logging
β β
β βββ utils/ # Utility functions and helpers
β βββ __init__.py # Utility exports
β βββ schema.py # Schema generation utilities
β βββ validation.py # Type validation helpers
β βββ auth.py # Authentication utilities
β
βββ examples/ # Usage examples and demos
β βββ basic_server.py # Simple MCP server example
β βββ multi_transport.py # Multi-transport server demo
β βββ proxy_composition.py # Server composition example
β βββ context_management.py # Context strategy examples
β βββ production_ready.py # Production deployment example
β
βββ docs/ # Documentation
β βββ index.md # Documentation home
β βββ quickstart.md # Getting started guide
β βββ patterns.md # Design patterns documentation
β βββ transports.md # Transport protocol guide
β βββ deployment.md # Production deployment guide
β βββ api/ # API reference documentation
β βββ server.md # Server API reference
β βββ client.md # Client API reference
β βββ transports.md # Transport API reference
β
βββ tests/ # Test suites
β βββ __init__.py # Test package initialization
β βββ conftest.py # Pytest configuration and fixtures
β β
β βββ unit/ # Unit tests
β β βββ test_server.py # Server implementation tests
β β βββ test_decorators.py # Decorator pattern tests
β β βββ test_transports.py # Transport adapter tests
β β βββ test_patterns.py # Design pattern integration tests
β β
β βββ integration/ # Integration tests
β β βββ test_workflows.py # End-to-end workflow tests
β β βββ test_composition.py # Server composition tests
β β βββ test_monitoring.py # Observability integration tests
β β
β βββ performance/ # Performance tests
β βββ test_throughput.py # Throughput benchmarks
β βββ test_latency.py # Latency measurements
β βββ test_scaling.py # Scaling behavior tests
β
βββ scripts/ # Development and deployment scripts
βββ setup_dev.py # Development environment setup
βββ build_docs.py # Documentation generation
βββ run_benchmarks.py # Performance benchmarking
βββ deploy.py # Deployment automation
Key Architectural Components
Core Framework (fastmcp/
)
fastmcp/
)Server Implementation (server.py
)
server.py
)Design Patterns: Decorator, Builder, Template Method
Responsibility: Main FastMCP server class with tool/resource registration
Key Features: Pythonic API, automatic schema generation, multi-transport support
Transport Layer (transports/
)
transports/
)Design Patterns: Adapter, Strategy
Responsibility: Protocol abstraction for STDIO, HTTP, SSE communication
Key Features: Transport-agnostic server development, pluggable protocols
Tool System (tools/
)
tools/
)Design Patterns: Decorator, Registry, Command
Responsibility: Tool registration, execution, and management
Key Features:
@mcp.tool
decorator, automatic parameter validation
Proxy System (proxy/
)
proxy/
)Design Patterns: Proxy, Composite, Chain of Responsibility
Responsibility: Server composition, request routing, federation
Key Features: Multi-server orchestration, load balancing, authentication
Monitoring System (monitoring/
)
monitoring/
)Design Patterns: Observer, Strategy
Responsibility: Observability, metrics collection, event tracking
Key Features: Real-time monitoring, performance analytics, debugging support
Pattern Implementation Mapping
server.py
Decorator, Builder
Tool registration, server configuration
Developer productivity, type safety
transports/
Adapter, Strategy
Protocol abstraction, pluggable communication
Deployment flexibility, infrastructure independence
tools/
Decorator, Registry
Function-to-tool transformation
Minimal boilerplate, automatic validation
proxy/
Proxy, Composite
Server composition, request federation
Horizontal scaling, complex workflows
context.py
Strategy, State
Session management, context strategies
Stateful AI interactions, persistence flexibility
monitoring/
Observer, Visitor
Event-driven monitoring, metrics collection
Production observability, performance optimization
LLM-Specific Architectural Innovations
AI-Aware Decorators
Location:
tools/decorators.py
Innovation: Automatic schema generation optimized for LLM consumption
Benefit: Functions become AI tools with zero configuration
Context-Sensitive Proxying
Location:
proxy/routing.py
Innovation: AI conversation state-aware request routing
Benefit: Intelligent tool selection based on interaction context
Semantic Transport Abstraction
Location:
transports/__init__.py
Innovation: Protocol abstraction maintaining semantic consistency
Benefit: LLMs interact identically regardless of communication method
Production-Ready Features
Monitoring and Observability
Component:
monitoring/
directoryFeatures: Real-time metrics, performance tracking, error monitoring
Patterns: Observer for event-driven monitoring, Strategy for different metric backends
Authentication and Security
Component:
utils/auth.py
,proxy/server.py
Features: Pluggable authentication, request validation, secure proxying
Patterns: Strategy for auth methods, Decorator for security enforcement
Configuration Management
Component:
server.py
,context.py
Features: Environment-based configuration, runtime customization
Patterns: Builder for configuration construction, Strategy for environment-specific settings
Enterprise Deployment Patterns
Single-Server Deployment
FastMCP Server
βββ Tools (via @mcp.tool decorators)
βββ Resources (data sources)
βββ STDIO Transport (direct LLM integration)
βββ Monitoring (Observer pattern)
Federated Deployment
FastMCP Proxy Server
βββ Authentication Layer
βββ Load Balancer
βββ Server Federation
β βββ Server A (specialized tools)
β βββ Server B (data resources)
β βββ Server C (computation services)
βββ Centralized Monitoring
Multi-Transport Architecture
FastMCP Server
βββ Core Logic
βββ Transport Layer (Adapter pattern)
β βββ STDIO (development)
β βββ HTTP (web integration)
β βββ SSE (real-time updates)
βββ Context Management (Strategy pattern)
Development and Testing Architecture
Test Organization
Unit Tests: Pattern implementation verification
Integration Tests: Multi-component workflow validation
Performance Tests: Throughput and latency benchmarking
Documentation Strategy
API Reference: Generated from type hints and docstrings
Pattern Guide: Design pattern usage and best practices
Deployment Guide: Production configuration and scaling
Development Workflow
Pattern-First Development: Design patterns guide implementation structure
Type-Driven Development: Full typing support with runtime validation
Test-Driven Integration: Pattern behavior verification through comprehensive testing
This structure demonstrates FastMCP's sophisticated application of design patterns to create a production-ready, developer-friendly framework for AI tool integration in the Model Context Protocol ecosystem.
Last updated