This directory contains hands-on workshop series designed to provide practical, interactive learning experiences with Python design patterns in LLM applications.
Status: ✅ Completed (2025-08-21) Modules: 8 comprehensive modules Focus: Enterprise-grade resource management for LLM applications
A complete workshop series covering Context Manager mastery from basic concepts to enterprise-grade implementations:
Basic Concepts (基础概念)arrow-up-right | 中文arrow-up-right
LLM Session Manager (大语言模型会话管理器)arrow-up-right | 中文arrow-up-right
Async Manager (异步管理器)arrow-up-right | 中文arrow-up-right
Smart Session (智能会话)arrow-up-right | 中文arrow-up-right
Nested Managers (嵌套管理器)arrow-up-right | 中文arrow-up-right
MCP Implementation (MCP 实现)arrow-up-right | 中文arrow-up-right
AsyncExitStack vs @asynccontextmanager (对比分析)arrow-up-right | 中文arrow-up-right
Local MCP Integration (本地 MCP 集成)arrow-up-right | 中文arrow-up-right
Design Patterns Analysis (设计模式分析)arrow-up-right | 中文arrow-up-right
Key Learnings:
Context Manager is essential for enterprise LLM applications
AsyncExitStack enables complex multi-resource management
AsyncExitStack
MCP protocol requires sophisticated resource orchestration
Production-ready error handling and cleanup strategies
Multi-agent systems using Chain of Responsibility pattern, featuring LangGraph-style SubGraph architecture.
Structured LLM output control using Factory pattern with Pydantic validation across multiple providers.
Last updated 5 months ago