LiteLLM Project Structure

Project: BerriAI/LiteLLM Analysis Date: 2025-08-12 Architecture Type: Multi-Provider LLM Proxy & SDK

Project Tree Structure & Pattern Mapping

litellm/
β”œβ”€β”€ litellm/                           # Core SDK Package
β”‚   β”œβ”€β”€ main.py                       # 🏭 Factory Pattern - Main completion API
β”‚   β”œβ”€β”€ router.py                     # 🎯 Strategy Pattern - Request routing logic
β”‚   β”œβ”€β”€ utils.py                      # πŸ”§ Utility functions and helpers
β”‚   β”œβ”€β”€ cost_calculator.py            # πŸ’° Cost tracking and optimization
β”‚   β”œβ”€β”€ budget_manager.py             # πŸ“Š Budget controls and limits
β”‚   β”œβ”€β”€ exceptions.py                 # ❌ Custom exception hierarchy
β”‚   β”‚
β”‚   β”œβ”€β”€ llms/                         # πŸ”Œ Adapter Pattern - Provider Implementations
β”‚   β”‚   β”œβ”€β”€ openai.py                 # OpenAI API adapter
β”‚   β”‚   β”œβ”€β”€ anthropic.py              # Anthropic Claude adapter
β”‚   β”‚   β”œβ”€β”€ vertex_ai.py              # Google Vertex AI adapter
β”‚   β”‚   β”œβ”€β”€ azure.py                  # Azure OpenAI adapter
β”‚   β”‚   β”œβ”€β”€ cohere.py                 # Cohere API adapter
β”‚   β”‚   β”œβ”€β”€ huggingface.py            # HuggingFace adapter
β”‚   β”‚   └── ...                       # 100+ other provider adapters
β”‚   β”‚
β”‚   β”œβ”€β”€ proxy/                        # πŸ›‘οΈ Proxy Pattern - Enterprise Features
β”‚   β”‚   β”œβ”€β”€ proxy_server.py           # Main proxy server implementation
β”‚   β”‚   β”œβ”€β”€ auth.py                   # Authentication and authorization
β”‚   β”‚   β”œβ”€β”€ health_check.py           # Health monitoring endpoints
β”‚   β”‚   β”œβ”€β”€ cost_tracking.py          # Real-time cost monitoring
β”‚   β”‚   └── rate_limiting.py          # Request throttling and quotas
β”‚   β”‚
β”‚   β”œβ”€β”€ integrations/                 # πŸ”— Integration Layer
β”‚   β”‚   β”œβ”€β”€ prometheus.py             # πŸ‘€ Observer Pattern - Metrics collection
β”‚   β”‚   β”œβ”€β”€ langfuse.py               # Observability integration
β”‚   β”‚   β”œβ”€β”€ slack.py                  # Notification integration
β”‚   β”‚   β”œβ”€β”€ wandb.py                  # Experiment tracking
β”‚   β”‚   └── custom_logger.py          # Custom logging implementations
β”‚   β”‚
β”‚   β”œβ”€β”€ secret_managers/              # πŸ” Strategy Pattern - Credential Management
β”‚   β”‚   β”œβ”€β”€ main.py                   # Secret manager interface
β”‚   β”‚   β”œβ”€β”€ azure_key_vault.py        # Azure Key Vault integration
β”‚   β”‚   β”œβ”€β”€ aws_secret_manager.py     # AWS Secrets Manager
β”‚   β”‚   β”œβ”€β”€ google_kms.py             # Google Cloud KMS
β”‚   β”‚   └── local_secrets.py          # Local environment variables
β”‚   β”‚
β”‚   β”œβ”€β”€ caching/                      # πŸ’Ύ Decorator Pattern - Response Caching
β”‚   β”‚   β”œβ”€β”€ caching.py                # Cache implementation and decorators
β”‚   β”‚   β”œβ”€β”€ redis_cache.py            # Redis cache backend
β”‚   β”‚   └── in_memory_cache.py        # In-memory cache backend
β”‚   β”‚
β”‚   └── types.py                      # πŸ“ Type definitions and interfaces
β”‚
β”œβ”€β”€ tests/                            # πŸ§ͺ Test Suite
β”‚   β”œβ”€β”€ test_completion.py            # Core completion testing
β”‚   β”œβ”€β”€ test_router.py                # Router functionality tests
β”‚   β”œβ”€β”€ test_proxy.py                 # Proxy server tests
β”‚   β”œβ”€β”€ test_providers/               # Provider-specific tests
β”‚   └── test_integrations/            # Integration tests
β”‚
β”œβ”€β”€ docs/                             # πŸ“š Documentation
β”‚   β”œβ”€β”€ my-website/                   # Documentation website
β”‚   β”œβ”€β”€ deployment/                   # Deployment guides
β”‚   └── troubleshooting/              # Troubleshooting guides
β”‚
β”œβ”€β”€ config/                           # βš™οΈ Configuration Files
β”‚   β”œβ”€β”€ cost.json                     # πŸ“Š Template Method - Cost calculation templates
β”‚   β”œβ”€β”€ model_prices_and_context_window.json  # Model capabilities database
β”‚   β”œβ”€β”€ provider_list.json            # Supported providers registry
β”‚   └── default_litellm_config.yaml   # Default configuration template
β”‚
β”œβ”€β”€ cookbook/                         # πŸ“– Example Implementations
β”‚   β”œβ”€β”€ proxy-server/                 # Proxy deployment examples
β”‚   β”œβ”€β”€ LiteLLM_Bedrock.ipynb        # AWS Bedrock integration
β”‚   β”œβ”€β”€ LiteLLM_OpenAI.ipynb         # OpenAI usage examples
β”‚   └── enterprise_examples/          # Enterprise use cases
β”‚
└── ui/                               # πŸ–₯️ Administrative Interface
    β”œβ”€β”€ litellm-dashboard/            # πŸ‘€ Observer Pattern - Monitoring dashboard
    β”œβ”€β”€ src/                          # Dashboard source code
    └── public/                       # Static assets

Architecture Pattern Analysis

1. Core API Layer (litellm/main.py, router.py)

Patterns: Factory + Strategy + Template Method

  • Factory Pattern: Dynamic provider client creation based on model name

  • Strategy Pattern: Intelligent routing based on cost, latency, or availability

  • Template Method: Standardized request processing pipeline

2. Provider Abstraction Layer (litellm/llms/)

Pattern: Adapter Pattern ⭐

  • Implementation: Each provider file contains an adapter class

  • Purpose: Convert OpenAI format ↔ Provider-specific format

  • Extensibility: Easy addition of new providers without core changes

3. Enterprise Proxy Layer (litellm/proxy/)

Patterns: Proxy + Observer + Command

  • Proxy Pattern: Intercepts and controls access to LLM APIs

  • Observer Pattern: Event-driven monitoring and logging

  • Command Pattern: Request queuing and rate limiting

4. Integration & Observability (litellm/integrations/)

Pattern: Observer Pattern ⭐

  • Implementation: Event subscribers for metrics, logs, and notifications

  • Extensibility: Plugin-style integration with monitoring systems

  • Real-time: Live dashboards and alerting

5. Security & Secrets (litellm/secret_managers/)

Pattern: Strategy Pattern

  • Implementation: Multiple credential management strategies

  • Security: Centralized secret handling with provider flexibility

  • Enterprise: Support for enterprise secret management systems

6. Caching Layer (litellm/caching/)

Pattern: Decorator Pattern

  • Implementation: Cache decorators wrap API calls

  • Performance: Reduces API costs and improves response times

  • Flexibility: Multiple cache backend strategies

Key Architectural Strengths

1. Unified Interface Design

# Same interface for any provider
completion(
    model="provider/model",  # Factory selects appropriate adapter
    messages=messages,       # Unified message format
    **kwargs                 # Provider-specific parameters
)

2. Enterprise-Grade Features

  • Authentication: Multi-tenant key management

  • Cost Control: Real-time tracking and budget limits

  • Observability: Comprehensive monitoring and analytics

  • Scalability: Proxy server architecture for high-volume deployments

3. Extensible Architecture

  • New Providers: Simply add new adapter in llms/ directory

  • Custom Integrations: Plugin-style integration system

  • Configuration: JSON-based model and pricing database

  • UI Components: Modular dashboard for monitoring

4. Production-Ready Design

  • Error Handling: Comprehensive exception hierarchy

  • Testing: Extensive test coverage for all components

  • Documentation: Complete deployment and usage guides

  • Monitoring: Built-in health checks and metrics

Pattern Integration Excellence

Multi-Pattern Synergy

  1. Adapter + Factory: Unified API with dynamic provider selection

  2. Strategy + Observer: Intelligent routing with comprehensive monitoring

  3. Proxy + Decorator: Access control with performance optimization

  4. Template Method + Command: Standardized processing with flexible execution

Enterprise Architecture Benefits

  • Vendor Independence: Easy provider switching without code changes

  • Operational Excellence: Centralized monitoring and control

  • Cost Optimization: Intelligent routing and usage tracking

  • Security: Enterprise-grade authentication and secret management

Comparison with Similar Projects

Component
LiteLLM
Our Project
LangChain

Provider Abstraction

Adapter Pattern

Factory Pattern

Custom classes

Routing Logic

Strategy Pattern

Basic selection

Chain-based

Enterprise Features

Full proxy suite

Basic client

Limited

Observability

Observer Pattern

Mock system

External

Configuration

JSON + YAML

Python config

Python code

Learning Insights for Our Project

1. Pattern Application Excellence

  • LiteLLM demonstrates mature use of Adapter pattern for provider abstraction

  • Strategy pattern enables sophisticated routing and optimization

  • Observer pattern provides enterprise-grade monitoring

2. Architecture Scalability

  • Proxy server pattern enables horizontal scaling

  • Modular design supports independent component evolution

  • Configuration-driven approach reduces code complexity

3. Enterprise Readiness

  • Comprehensive authentication and authorization

  • Real-time cost tracking and budget controls

  • Production-grade monitoring and alerting

4. Developer Experience

  • Drop-in replacement for existing OpenAI code

  • Extensive documentation and examples

  • Rich configuration options for different deployment scenarios

LiteLLM represents a sophisticated implementation of enterprise LLM integration patterns, providing a blueprint for production-ready, scalable, and maintainable AI system architectures.

Last updated