Template Method Pattern

The Template Method pattern is excellent for LLM applications where you have a common workflow structure but need to customize specific steps for different contexts, models, or domains.

Why Template Method for LLM?

LLM applications often require:

  • Standardized workflows: Common processing pipelines with customizable steps

  • Consistent structure: Maintaining the same overall flow while allowing customization

  • Code reuse: Shared infrastructure with domain-specific implementations

  • Quality control: Enforced workflow patterns with flexibility in implementation details

Key LLM Use Cases

1. AI Agent Workflow Template

A common structure for AI agent processing with customizable steps:

from abc import ABC, abstractmethod

class AIAgentTemplate(ABC):
    """Template for AI agent processing workflow"""
    
    def process_request(self, user_input):
        """The template method defining the algorithm structure"""
        # Step 1: Preprocess input
        processed_input = self.preprocess_input(user_input)
        
        # Step 2: Analyze and understand the request
        analysis = self.analyze_request(processed_input)
        
        # Step 3: Generate response using LLM
        response = self.generate_response(analysis)
        
        # Step 4: Post-process and validate response
        final_response = self.postprocess_response(response)
        
        # Step 5: Log and monitor
        self.log_interaction(user_input, final_response)
        
        return final_response
    
    def preprocess_input(self, user_input):
        """Default preprocessing - can be overridden"""
        return user_input.strip().lower()
    
    @abstractmethod
    def analyze_request(self, input_text):
        """Must be implemented by subclasses"""
        pass
    
    @abstractmethod
    def generate_response(self, analysis):
        """Must be implemented by subclasses"""
        pass
    
    def postprocess_response(self, response):
        """Default post-processing - can be overridden"""
        return response
    
    def log_interaction(self, input_text, response):
        """Default logging - can be overridden"""
        print(f"Input: {input_text[:50]}...")
        print(f"Output: {response[:50]}...")

class CodeAssistantAgent(AIAgentTemplate):
    def analyze_request(self, input_text):
        # Analyze if it's a coding question
        return {
            "type": "coding",
            "language": self.detect_language(input_text),
            "complexity": self.assess_complexity(input_text)
        }
    
    def generate_response(self, analysis):
        prompt = f"""
        You are a coding assistant. Help with this {analysis['language']} question.
        Complexity level: {analysis['complexity']}
        
        Question: {analysis['input']}
        
        Provide code examples and explanations.
        """
        return self.llm.generate(prompt)
    
    def detect_language(self, text):
        # Language detection logic
        return "python"  # simplified
    
    def assess_complexity(self, text):
        # Complexity assessment logic
        return "medium"  # simplified

class MathTutorAgent(AIAgentTemplate):
    def analyze_request(self, input_text):
        return {
            "type": "math",
            "topic": self.identify_math_topic(input_text),
            "level": self.assess_difficulty(input_text)
        }
    
    def generate_response(self, analysis):
        prompt = f"""
        You are a math tutor. Help with this {analysis['topic']} problem.
        Difficulty level: {analysis['level']}
        
        Problem: {analysis['input']}
        
        Provide step-by-step solution and explanation.
        """
        return self.llm.generate(prompt)

Benefits:

  • Consistent workflow across different agent types

  • Shared infrastructure and logging

  • Easy to add new agent types

  • Enforced quality control steps

2. RAG Pipeline Template

A standardized pipeline for Retrieval-Augmented Generation:

Benefits:

  • Consistent RAG pipeline structure

  • Domain-specific customization

  • Reusable infrastructure components

  • Quality assurance through standardized steps

3. Multi-Modal Processing Template

Template for handling different types of input (text, images, audio):

Benefits:

  • Unified interface for different input types

  • Consistent processing pipeline

  • Easy extension to new input types

  • Standardized feature extraction and processing

4. Evaluation and Testing Template

Template for evaluating LLM outputs with different metrics:

Benefits:

  • Consistent evaluation framework

  • Standardized metrics calculation

  • Easy comparison across different models

  • Comprehensive evaluation reports

Implementation Advantages

1. Code Reuse

  • Common workflow infrastructure shared across implementations

  • Reduced duplication of boilerplate code

  • Consistent error handling and logging

  • Shared utility methods

2. Maintainability

  • Clear separation between template structure and specific implementations

  • Easy to modify common workflow without affecting implementations

  • Centralized quality control and validation

  • Consistent interface across different implementations

3. Extensibility

  • Easy to add new implementations following the same template

  • Hook methods allow fine-grained customization

  • Template evolution doesn't break existing implementations

  • Plugin-like architecture for new functionality

4. Quality Assurance

  • Enforced workflow patterns ensure consistency

  • Mandatory implementation of critical methods

  • Built-in validation and error handling

  • Standardized logging and monitoring

Real-World Impact

The Template Method pattern in LLM applications provides:

  • Consistency: Standardized workflows across different AI applications

  • Quality Control: Enforced best practices and validation steps

  • Developer Productivity: Reduced boilerplate code and faster development

  • System Reliability: Proven workflow patterns and error handling

This pattern is essential for production LLM systems where you need consistent behavior across different implementations while allowing for domain-specific customization and optimization.

Last updated