AI Agent System Template

Claude Code Template for Building Intelligent AI Agent Systems

This template provides a structured approach to building AI agent systems using proven design patterns. Perfect for creating LangChain-style workflows, multi-agent systems, or intelligent automation tools.

πŸ—οΈ Project Structure

your_ai_agent_project/
β”œβ”€β”€ agents/
β”‚   β”œβ”€β”€ __init__.py
β”‚   β”œβ”€β”€ base_agent.py          # Abstract base class (Template Method)
β”‚   β”œβ”€β”€ specialized_agents.py  # Concrete agent implementations
β”‚   └── agent_factory.py       # Agent creation (Factory Pattern)
β”œβ”€β”€ tools/
β”‚   β”œβ”€β”€ __init__.py
β”‚   β”œβ”€β”€ tool_registry.py       # Tool management (Registry Pattern)
β”‚   β”œβ”€β”€ base_tool.py          # Tool interface (Command Pattern)
β”‚   └── implementations/       # Specific tool implementations
β”œβ”€β”€ providers/
β”‚   β”œβ”€β”€ __init__.py
β”‚   β”œβ”€β”€ llm_factory.py        # Provider creation (Abstract Factory)
β”‚   β”œβ”€β”€ base_provider.py      # Provider interface (Strategy Pattern)
β”‚   └── implementations/      # OpenAI, Anthropic, etc.
β”œβ”€β”€ workflow/
β”‚   β”œβ”€β”€ __init__.py
β”‚   β”œβ”€β”€ chain_manager.py      # Request routing (Chain of Responsibility)
β”‚   └── execution_engine.py  # Workflow orchestration
β”œβ”€β”€ config/
β”‚   β”œβ”€β”€ settings.py           # Configuration management
β”‚   └── config.yaml          # Runtime configuration
β”œβ”€β”€ utils/
β”‚   β”œβ”€β”€ __init__.py
β”‚   β”œβ”€β”€ logger.py            # Logging utilities
β”‚   └── validators.py       # Input validation
└── main.py                  # Entry point (Facade Pattern)

🎯 Design Patterns Applied

1. Template Method Pattern - Agent Workflow

2. Factory Pattern - Agent Creation

3. Chain of Responsibility - Request Routing

4. Strategy Pattern - LLM Provider Selection

5. Command Pattern - Tool System

πŸš€ Quick Start Guide

1. Create Your Agent System

2. Configure Your System

🎯 Use Cases

This template is perfect for:

  • Multi-Agent Systems: Customer service, research assistants, coding helpers

  • Workflow Automation: Document processing, data analysis pipelines

  • AI-Powered Tools: Code generation, content creation, data extraction

  • Intelligent Routing: Request classification and specialized handling

πŸ”§ Customization Points

  1. Add New Agents: Extend BaseAgent for domain-specific functionality

  2. New LLM Providers: Implement LLMProvider interface

  3. Custom Tools: Create new Tool implementations

  4. Routing Logic: Modify AgentChain for complex routing rules

πŸ’‘ Pro Tips

  • Use the Observer pattern to add monitoring and analytics

  • Implement Retry logic with exponential backoff for reliability

  • Add Caching to improve performance and reduce costs

  • Use Configuration files for easy environment switching

Start building your intelligent agent system with proven design patterns! πŸš€

Last updated