ByteDance Trae-Agent Structure

Project Tree Structure with Design Pattern Mapping

trae-agent/
β”œβ”€β”€ πŸ“ trae_agent/                    # Main Application Package
β”‚   β”œβ”€β”€ πŸ“ agent/                     # 🎯 STRATEGY + TEMPLATE METHOD + FACTORY
β”‚   β”‚   β”œβ”€β”€ base_agent.py             # Template Method Pattern (workflow definition)
β”‚   β”‚   β”œβ”€β”€ specialized_agents.py     # Strategy Pattern (different AI behaviors)
β”‚   β”‚   β”œβ”€β”€ agent_factory.py          # Factory Pattern (agent creation)
β”‚   β”‚   └── agent_manager.py          # Registry Pattern (agent lookup)
β”‚   β”‚
β”‚   β”œβ”€β”€ πŸ“ prompt/                    # πŸ—οΈ BUILDER + TEMPLATE METHOD
β”‚   β”‚   β”œβ”€β”€ prompt_builder.py         # Builder Pattern (flexible prompt construction)
β”‚   β”‚   β”œβ”€β”€ template_manager.py       # Template Method (standard prompt formats)
β”‚   β”‚   └── prompt_optimizer.py      # Strategy Pattern (optimization algorithms)
β”‚   β”‚
β”‚   β”œβ”€β”€ πŸ“ tools/                     # πŸ”§ COMMAND + REGISTRY + FACTORY
β”‚   β”‚   β”œβ”€β”€ base_tool.py              # Command Pattern (tool interface)
β”‚   β”‚   β”œβ”€β”€ tool_registry.py          # Registry Pattern (tool management)
β”‚   β”‚   β”œβ”€β”€ tool_factory.py           # Factory Pattern (tool instantiation)
β”‚   β”‚   └── implementations/          # Concrete Commands
β”‚   β”‚       β”œβ”€β”€ bash_tool.py          # Command: Bash execution
β”‚   β”‚       β”œβ”€β”€ file_tool.py          # Command: File operations
β”‚   β”‚       └── web_tool.py           # Command: Web interactions
β”‚   β”‚
β”‚   └── πŸ“ utils/                     # πŸ”§ UTILITY + CONFIGURATION
β”‚       β”œβ”€β”€ config_manager.py         # Configuration Pattern
β”‚       β”œβ”€β”€ logger.py                 # Observer Pattern (logging)
β”‚       └── validators.py             # Validation utilities
β”‚
β”œβ”€β”€ πŸ“ docs/                          # Documentation
β”œβ”€β”€ πŸ“ evaluation/                    # πŸ“Š OBSERVER PATTERN
β”‚   β”œβ”€β”€ trajectory_recorder.py        # Observer: Recording agent behavior
β”‚   β”œβ”€β”€ performance_monitor.py        # Observer: Performance tracking
β”‚   └── evaluator.py                  # Template Method: Standard evaluation
β”‚
β”œβ”€β”€ πŸ“ tests/                         # Testing Infrastructure
β”œβ”€β”€ 🐍 cli.py                         # 🎭 FACADE PATTERN
β”‚                                     # Simplified interface to complex system
β”œβ”€β”€ βš™οΈ trae_config.json.example       # Configuration Pattern
β”œβ”€β”€ βš™οΈ trae_config.yaml.example       # Configuration Pattern
└── πŸ“¦ pyproject.toml                 # Modern Python packaging

Design Pattern Interactions & Effects

Pattern Synergies & Combined Effects

πŸ”„ Pattern Collaboration Flow

🎯 Achieved System Properties

Pattern Combination
System Property
Benefit

Facade + Factory

Easy to Use

Single interface, automatic object creation

Strategy + Template Method

Flexible Workflows

Standard process, customizable behavior

Command + Registry

Extensible Tools

Dynamic tool discovery, plugin architecture

Observer + All Patterns

Transparent Operations

Full system observability for research

Factory + Strategy

Provider Independence

Easy switching between AI models/providers

Registry + Command

Plugin Architecture

Community extensibility, tool marketplace

🏒 Enterprise-Grade Features Enabled

Key Insights

Why This Architecture Works

  1. 🎭 Facade Pattern: Provides simple CLI interface while hiding system complexity

  2. 🏭 Factory Ecosystem: Creates consistent object families (agents, tools, providers)

  3. πŸ“‹ Template Method: Ensures consistent behavior while allowing customization

  4. πŸ‘οΈ Observer Network: Enables complete system transparency for research

  5. πŸ”§ Command System: Makes operations reversible, loggable, and extensible

Pattern Integration Benefits

  • Maintainability: Clear boundaries between components

  • Extensibility: Easy to add new agents, tools, and providers

  • Observability: Complete transparency for research and debugging

  • Reliability: Robust error handling and recovery mechanisms

  • Performance: Optimized workflows with intelligent routing

This architecture demonstrates how multiple design patterns work together to create a sophisticated, research-friendly AI agent system that balances power with usability.

Last updated