OpenManus Structure

Repository Overview

Project: OpenManus FoundationAgents URL: https://github.com/FoundationAgents/OpenManus Purpose: Open-source framework for building general AI agents

Project Structure

OpenManus/
β”œβ”€β”€ app/                          # Core application modules
β”‚   β”œβ”€β”€ agents/                   # Agent implementations
β”‚   β”œβ”€β”€ core/                     # Core framework components
β”‚   β”œβ”€β”€ tools/                    # Agent tools and utilities
β”‚   └── protocols/                # Communication protocols
β”œβ”€β”€ assets/                       # Project assets
β”‚   β”œβ”€β”€ logos/                    # Brand assets
β”‚   └── images/                   # Documentation images
β”œβ”€β”€ config/                       # Configuration management
β”‚   β”œβ”€β”€ config.example.toml       # Configuration template
β”‚   └── agent_configs/            # Agent-specific configurations
β”œβ”€β”€ examples/                     # Usage examples and demos
β”‚   β”œβ”€β”€ basic_agent.py           # Simple agent example
β”‚   β”œβ”€β”€ multi_agent.py           # Multi-agent coordination
β”‚   └── custom_tools.py          # Custom tool integration
β”œβ”€β”€ protocol/                     # Communication protocols
β”‚   └── a2a/                     # Agent-to-agent communication
β”‚       β”œβ”€β”€ messages.py          # Message definitions
β”‚       └── handlers.py          # Message handlers
β”œβ”€β”€ tests/                        # Testing infrastructure
β”‚   β”œβ”€β”€ sandbox/                 # Sandbox testing environment
β”‚   β”œβ”€β”€ unit/                    # Unit tests
β”‚   └── integration/             # Integration tests
β”œβ”€β”€ workspace/                    # Agent workspace management
β”‚   β”œβ”€β”€ shared/                  # Shared resources
β”‚   └── agents/                  # Agent-specific workspaces
β”œβ”€β”€ main.py                      # Primary entry point
β”œβ”€β”€ run_flow.py                  # Multi-agent workflow runner
β”œβ”€β”€ run_mcp.py                   # MCP (Main Control Process) runner
β”œβ”€β”€ requirements.txt             # Python dependencies
β”œβ”€β”€ setup.py                     # Package setup configuration
β”œβ”€β”€ README.md                    # Project documentation
└── LICENSE                      # Open-source license

Directory Analysis

Core Application (app/)

Purpose: Contains the main framework components Key Components:

  • agents/: Different agent type implementations

  • core/: Framework base classes and utilities

  • tools/: Reusable agent tools and capabilities

  • protocols/: Communication and coordination protocols

Design Patterns:

  • Factory Pattern: Agent creation and instantiation

  • Strategy Pattern: Different agent behaviors and tools

  • Template Method: Base agent class with customizable methods

Configuration (config/)

Purpose: Configuration management and templates Key Files:

  • config.example.toml: Configuration template with LLM settings

  • agent_configs/: Agent-specific configuration files

Design Patterns:

  • Strategy Pattern: Runtime configuration of different LLM providers

  • Builder Pattern: Complex configuration construction

Protocol System (protocol/a2a/)

Purpose: Agent-to-agent communication infrastructure Components:

  • messages.py: Message format definitions

  • handlers.py: Message processing logic

Design Patterns:

  • Observer Pattern: Event-driven agent communication

  • Command Pattern: Message-based action execution

  • Mediator Pattern: Centralized agent communication

Entry Points

Purpose: Multiple ways to run and interact with agents

main.py - Single Agent Runner

  • Pattern: Facade Pattern

  • Purpose: Simple interface for single agent execution

  • Use Case: Basic agent tasks and demonstrations

run_flow.py - Multi-Agent Workflow

  • Pattern: Command + Composite Pattern

  • Purpose: Orchestrate multiple agents in workflows

  • Use Case: Complex multi-step agent coordination

run_mcp.py - MCP Tool Integration

  • Pattern: Adapter Pattern

  • Purpose: Integration with external MCP tools

  • Use Case: Extended tool capabilities and integrations

Testing Infrastructure (tests/)

Purpose: Comprehensive testing framework Components:

  • sandbox/: Isolated testing environment for agents

  • unit/: Component-level testing

  • integration/: End-to-end workflow testing

Design Patterns:

  • Factory Pattern: Test agent and scenario creation

  • Strategy Pattern: Different testing approaches

  • Template Method: Standardized test execution

Workspace Management (workspace/)

Purpose: Agent runtime environment and resource management Components:

  • shared/: Common resources and utilities

  • agents/: Individual agent workspaces

Design Patterns:

  • Singleton Pattern: Shared resource management

  • Factory Pattern: Workspace creation and initialization

  • Observer Pattern: Workspace state monitoring

Architecture Insights

Modular Design

  • Separation of Concerns: Clear boundaries between configuration, execution, testing

  • Loosely Coupled: Components can be modified independently

  • Extensible: New agents and tools can be added without core changes

Configuration-Driven Architecture

  • Runtime Flexibility: Behavior modification through configuration

  • Environment Adaptation: Easy deployment across different environments

  • Provider Independence: Switch between different LLM providers seamlessly

Multi-Modal Entry Points

  • Single Agent: Simple tasks and demonstrations

  • Multi-Agent: Complex workflows and coordination

  • MCP Integration: Extended tool and system integration

Production-Ready Features

  • Testing Infrastructure: Comprehensive testing at multiple levels

  • Configuration Management: Environment-specific settings

  • Workspace Isolation: Safe agent execution environments

  • Protocol-Based Communication: Standardized agent interactions

Pattern Implementation Analysis

Primary Patterns in Structure

  1. Facade Pattern: Clean entry points (main.py, run_*.py)

  2. Factory Pattern: Agent creation (app/agents/) and configuration

  3. Strategy Pattern: Configurable behaviors and LLM providers

  4. Observer Pattern: Agent communication (protocol/a2a/)

  5. Command Pattern: Message-based agent coordination

Supporting Patterns

  1. Template Method: Base agent classes with customizable behavior

  2. Adapter Pattern: MCP tool integration and external system connection

  3. Mediator Pattern: Centralized agent communication management

  4. Singleton Pattern: Shared resource and workspace management

This structure demonstrates a well-architected AI agent framework that effectively applies multiple design patterns to create a flexible, extensible, and production-ready system.

Last updated