LLM Python Patterns
  • README
  • 📚DESIGN PATTERNS REFERENCE
    • BEHAVIORAL PATTERNS
      • Chain of Responsibility Pattern
      • Observer Pattern
      • Strategy Pattern
      • Template Method Pattern
    • CREATIONAL PATTERNS
      • Abstract Factory Pattern
      • Builder Pattern
      • Factory Pattern
    • STRUCTURAL PATTERNS
      • Adapter Pattern
      • Decorator Pattern
      • Proxy Pattern
  • ENTERPRISE CASE STUDIES
    • REAL-WORLD ARCHITECTURE ANALYSIS
      • ByteDance Trae-Agent Analysis
      • FastMCP Framework Analysis
      • LiteLLM Enterprise Architecture
      • OpenManus FoundationAgents Analysis
      • Resume-Matcher System Design
      • PROJECT STRUCTURES
        • ByteDance Trae-Agent Structure
        • FastMCP Project Structure
        • LiteLLM Project Structure
        • OpenManus Structure
        • Resume-Matcher Structure
  • 🛠️INTERACTIVE WORKSHOPS
    • HANDS-ON IMPLEMENTATIONS
      • AI Agent Chain Workshop
      • JSON Schema Factory Workshop
      • 🔧Context Management Workshop
      • 🔧Context Management Workshop - zh
  • 📝LEARNING NOTES
    • PERSONAL KNOWLEDGE REPOSITORY
      • Summary Index
      • PATTERN-BASED NOTES
        • Basic Fundamentals
        • Behavioral Patterns
        • Creational Patterns
        • Structural Patterns
      • CONTEXT-BASED NOTES
        • General Insights
        • News & Discoveries
  • CLAUDE CODE TEMPLATES
    • READY-TO-USE TEMPLATES
      • 🎯LLM Pattern Decision Guide
      • AI Agent System Template
      • Multi-LLM Provider Template
Powered by GitBook
On this page
  1. 🛠️INTERACTIVE WORKSHOPS

HANDS-ON IMPLEMENTATIONS

PreviousResume-Matcher StructureNextAI Agent Chain Workshop

Last updated 4 days ago

CtrlK
  • 📚 Available Workshops
  • 🔧 Python Context Manager Workshop
  • 🤖 AI Agent Chain Workshop
  • 🔄 JSON Schema Factory Workshop

This directory contains hands-on workshop series designed to provide practical, interactive learning experiences with Python design patterns in LLM applications.

📚 Available Workshops

🔧 Python Context Manager Workshop

Status: ✅ Completed (2025-08-21) Modules: 8 comprehensive modules Focus: Enterprise-grade resource management for LLM applications

A complete workshop series covering Context Manager mastery from basic concepts to enterprise-grade implementations:

  1. Basic Concepts (基础概念) | 中文

  2. LLM Session Manager (大语言模型会话管理器) | 中文

  3. Async Manager (异步管理器) | 中文

  4. Smart Session (智能会话) | 中文

  5. |

  6. |

  7. |

  8. |

  9. |

Key Learnings:

  • Context Manager is essential for enterprise LLM applications

  • AsyncExitStack enables complex multi-resource management

  • MCP protocol requires sophisticated resource orchestration

  • Production-ready error handling and cleanup strategies

🤖 AI Agent Chain Workshop

Multi-agent systems using Chain of Responsibility pattern, featuring LangGraph-style SubGraph architecture.

🔄 JSON Schema Factory Workshop

Structured LLM output control using Factory pattern with Pydantic validation across multiple providers.

Nested Managers (嵌套管理器)
中文
MCP Implementation (MCP 实现)
中文
AsyncExitStack vs @asynccontextmanager (对比分析)
中文
Local MCP Integration (本地 MCP 集成)
中文
Design Patterns Analysis (设计模式分析)
中文