Step Snap 1: [The Knowledge Network Revolution]
# Traditional RAG vs GraphRAG conceptual difference
def traditional_rag(query, documents):
chunks = split_into_chunks(documents)
embeddings = compute_embeddings(chunks)
relevant_chunks = retrieve_similar_chunks(query, embeddings)
return generate_answer(query, relevant_chunks)
def graph_rag(query, documents):
chunks = split_into_chunks(documents)
# The magic happens here:
entities = extract_entities(chunks)
relationships = discover_relationships(entities, chunks)
knowledge_graph = build_graph(entities, relationships)
communities = detect_communities(knowledge_graph)
summaries = create_hierarchical_summaries(communities)
relevant_summaries = retrieve_relevant_communities(query, summaries)
return generate_answer(query, relevant_summaries)Step Snap 2: [Final Comparison: Traditional Rag vs GraphRag
Step Snap 3: [Inside the GraphRAG Engine]
Step Snap 4: [Practical Implementation]
Step Snap 5: [Cost vs. Benefit Analysis]
Last updated